**King Abdulaziz University Department of Mathematics** 



1<sup>st</sup> Semester 1439-1440 Faculty of Sciences -Version

### Math 241 "Students Syllabus"

### **Textbook: Elementary Linear Algebra, Sixth Edition**

Authors: R. Larson and D.C. Falvo

|                                     |                                                             | Lectures                                                                                                                                  |          |           |                                                    |
|-------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------------------------------------------------|
| Chapter Section<br>Title Title Si   |                                                             | Subtitle                                                                                                                                  | Examples | Exercises | нw                                                 |
| <u>er 1</u><br>f Linear<br>ions     | 1.1<br>Introduction to Systems of<br>Linear Equations       | <ul> <li>Linear Equations in n Variables.</li> <li>Systems of Linear Equations.</li> <li>Solving a System of Linear Equations.</li> </ul> | 1-5      | 1-6       | 16, 69, 70                                         |
| <u>Chapt</u><br>Systems o<br>Equati | 1.2<br>Gaussian Elimination and<br>Gauss-Jordan Elimination | <ul> <li>Elementary Row Operations.</li> <li>Gauss –Jordan Elimination.</li> <li>Homogeneous Systems of Linear Equations.</li> </ul>      | 1-9      |           | 4, 7, 20, 21, 27, 44,<br>47, 48, 49, 57, 61,<br>62 |

#### Syllabus of Math 241 – Linear Algebra I

| <u>Chapter 2</u><br>Matrices     | 2.1<br>Operations with Matrices                                      | <ul> <li>Matrix Addition.</li> <li>Scalar Multiplication.</li> <li>Matrix Multiplication.</li> <li>Systems of Linear Equations.</li> </ul> | 1-6    |    | 1-3, 7-10, 12-15,<br>21-28, 37, 38, 40,<br>41, 44, 49, 51-53                |
|----------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----------------------------------------------------------------------------|
|                                  | 2.2<br>Properties of Matrix<br>Operations                            | <ul><li> Properties of Matrix Multiplication.</li><li> The Transpose of a Matrix.</li></ul>                                                | 1-10   |    | 1, 5, 7, 13, 14, 16,<br>17, 19-22, 29, 30,<br>32, 39, 55, 57- 59,<br>61, 65 |
|                                  | 2.3<br>The Inverse of a Matrix                                       | <ul><li> Properties of Inverses.</li><li> Systems of Equations.</li></ul>                                                                  | 1, 3-8 | 48 | 2, 4, 5, 9, 25-27,<br>33, 38, 39, 41, 42,<br>49, 52, 56- 58                 |
| <u>Chapter 3</u><br>Determinants | 3.1<br>The Determinant of a<br>Matrix                                | • Triangular Matrices.                                                                                                                     | 1-4, 6 |    | 13, 15, 19, 33, 41-<br>45, 49, 51-54, 67-<br>72,74                          |
|                                  | 3.2<br>Evaluation of a Determinant<br>Using Elementary<br>Operations | • Determinants and Elementary Column<br>Operations                                                                                         | 2-6    |    | 15-20, 31-33, 48                                                            |
|                                  | 3.3<br>Properties of Determinants                                    | <ul> <li>Determinants and the Inverse of a<br/>Matrix.</li> <li>Determinants and the Transpose of a<br/>Matrix</li> </ul>                  | 1-6    |    | 3,4, 7-9, 12, 15,<br>23, 25, 45, 47, 49,<br>50, 64, 65, 67, 69,<br>72, 73   |
|                                  | 3.5<br>Applications of<br>Determinants                               | • The Adjoint of a Matrix, Cramer's rule                                                                                                   | 1-4    |    | 2-4, 11, 15, 25-27,<br>29, 43                                               |

#### Syllabus of Math 241 – Linear Algebra I

| <u>Chapter 4</u><br>Vector Spaces | 4.1 Vectors in $R^n$                                       | • Vectors in $R^n$                                                                                                     | 4-6       | 13, 15, 23, 27, 28,<br>47-49                                             |
|-----------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------|
|                                   | 4.2<br>Vector Spaces                                       |                                                                                                                        | 2-4, 6-8  | 1, 3, 4, 6, 19-24,<br>29(a,b), 33, 34                                    |
|                                   | 4.3<br>Subspaces of Vector Spaces                          | • Subspaces of $R^n$                                                                                                   | 1-4, 6, 8 | 1, 4, 7, 9, 29, 31-<br>35, 41, 44, 45                                    |
|                                   | 4.4<br>Spanning Sets and Linear<br>Independence            | <ul> <li>Spanning Sets.</li> <li>Linear Dependence and Linear<br/>Independence.</li> </ul>                             | 1-13      | 2, 7, 9, 13, 15, 18,<br>19, 21, 27, 31, 32,<br>39, 49, 59, 65            |
|                                   | 4.5<br>Basis and Dimension                                 | • The Dimension of a Vector Space                                                                                      | 1-12      | 8-9, 11, 16, 17, 21,<br>25, 35, 41, 43, 45,<br>49, 63, 67, 70, 73,<br>79 |
|                                   | 4.6<br>Rank of a Matrix and<br>Systems of Linear Equations | <ul> <li>The Null Space of a Matrix.</li> <li>Systems of Linear Equations with Square Coefficient Matrices.</li> </ul> | 1-7       | 2, 3, 7, 9, 13, 15,<br>21, 23, 27, 29, 35,<br>66                         |

| <u>ter 6</u><br>near<br>ormations                      | 6.1<br>Introduction to Linear<br>Transformations          |                                                                                                                    | 1, 2, 4-6, 9     | 2, 3, 9, 10, 15, 17,<br>20, 22, 23, 32, 33,<br>39, 53, 68, 69, 73 |
|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------|
| <u>Chap</u><br>L<br>Transf                             | 6.2<br>The Kernel and Range of a<br>Linear Transformation | <ul> <li>The Range of a Linear Transformation.</li> <li>One-to-One and Onto Linear<br/>Transformations.</li> </ul> | 1, 2, 4-11       | 1, 3, 5, 9, 11, 13,<br>17, 22, 31, 33, 49,<br>51, 56              |
| <u>Chapter 7</u><br>Eigenvalues<br>and<br>Eigenvectors | 7.1<br>Eigenvalues and<br>Eigenvectors                    | • Eigenspaces                                                                                                      | 1, 2, 4, 5,<br>7 | 2, 7, 11(a,b),<br>13(a,b), 15, 17,<br>19, 23, 25, 63, 65          |

# **Lists of Theorems:**

| Chapters | Theorems with proofs          | Theorems without proofs                                                 |
|----------|-------------------------------|-------------------------------------------------------------------------|
| 1        | _                             | 1.1                                                                     |
| 2        | 2.7 - 2.8 - 2.9 - 2.10 - 2.11 | 2.1 - 2.2 - 2.3 - 2.4 - 2.5 - 2.6                                       |
| 3        | 3.8                           | 3.1 - 3.2 - 3.3 - 3.4 - 3.5 - 3.6 - 3.7 - 3.9 - 3.10 - 3.11             |
| 4        | 4.5 - 4.6 - 4.7 - 4.8 - 4.9   | 4.2 - 4.3 - 4.4 - 4.10 - 4.11 - 4.12 - 4.13 - 4.14 - 4.15 - 4.16 - 4.17 |
| 6        | 6.2 - 6.3 - 6.6               | 6.1 - 6.4 - 6.5 - 6.7 - 6.8                                             |
| 7        | -                             | 7.1-7.2-7.3                                                             |

## **Remarks:**

1. Any student who misses 25% of the class will receive DN.

2. Students should solve all problems in HW column.

3. If one of the students is absent from one of the exams due to an <u>acceptable excuse</u> by the instructor, and then the mark will be calculated as a percentage from the total of the other exams.

4. The requirements to get an IC grade due to being absent from the final exam are: an attendance of at least 80% of the total lectures, attendance of the first and second exams and an acceptable excuse by the Educational Affairs.

## Marks distribution:

|             | First Exam       | Second Exam      | Section & HW | Final Exam        | Total |
|-------------|------------------|------------------|--------------|-------------------|-------|
| Time; marks | 90 min; 25 marks | 90 min; 25 marks | 10 marks     | 120 min; 40 marks | 100   |
| Date        |                  |                  | weekly       |                   |       |
| Curriculum  | Ch(1) to Ch(3)   | Ch(4)            |              | ALL               |       |